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Problem to address: Neural Nets + Limited (GPU) Capacity + 

Large Medical Image

Patch

 [Li, J. et al, 2021]

Cascaded CNN

[Kodym, O. et al, 2020]

Sparse CNN

[Artem, K., Li, J. 

et al, 2021]
Resample 

[Matzkin, F. et al, 2020]

 or Downsampling

[Mainprize, J.G, et al, 2020]



Voxel Rearrangement = High-resolution Output  + Low Memory Consumption (~6GB)

𝑠𝑘𝑢𝑙𝑙 𝑖𝑚𝑎𝑔𝑒:  512 ∗ 512 ∗ 𝑍
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How - Voxel Rearrangement:  Conversion between 0s and 1s for binary images

x1y1

1 0
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𝑖𝑛𝑝𝑢𝑡

𝑡𝑎𝑟𝑔𝑒𝑡
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𝐹 0 = 0, 𝑥1𝑦1

𝐹 0 = 1, 𝑥2𝑦2

𝐹 1 = 0, 𝑥3𝑦3

𝐹 1 = 1, 𝑥4𝑦4
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• can be learned: CNN 
• updating voxels based on a high-resolution 

template image
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Voxel Rearrangement = High Resolution Output  + Low Memory Consumption (~6GB)

• A coarse-to-fine (C2F) Framework:  the memory consumption is equivalent to 
processing low-resolution (128 ∗ 128 ∗ 64) images.

• High-resolution outcome can be obtained from the coarse output, using only 
roughly 6GB GPU memory. 

128 ∗ 128 ∗ 64 128 ∗ 128 ∗ 64 512 ∗ 512 ∗ 𝑍 512 ∗ 512 ∗ 𝑍

𝒗𝒐𝒙𝒆𝒍 𝒓𝒆𝒂𝒓𝒓𝒂𝒏𝒈𝒆𝒎𝒆𝒏𝒕𝒂𝒖𝒕𝒐𝐞𝐧𝐜𝐨𝐝𝐞𝐫 𝒊𝒏𝒕𝒆𝒓𝒑𝒐𝒍𝒂𝒕𝒊𝒐𝒏
Coarse High Resolution



Learned Voxel Rearrangement

𝑎𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟

Coarse High Resolution
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(𝒃)𝒂

Resulting Skull Voxel Grid:

Coarse skull Reconstructed skull through voxel 
rearrangement of the coarse skull

Learned Voxel Rearrangement



3D printing - Voxel grid to Mesh: Marching Cube
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Red line: extracted isosurface from the corresponding voxel grid

Learned Voxel Rearrangement



(𝒃)𝒂

Resulting Skull Triangular Mesh:

Coarse skull
Reconstructed skull through voxel 
rearrangement of the coarse skull

Learned Voxel Rearrangement



3D Printing of Cranial Implant

Voxel grid

Mesh

coarse Reconstructed Groundtruth

Learned Voxel Rearrangement



Smoothing Filters

Smoothing Filters: 

▪ Non-detail preserving

▪ Substantially erasing voxels non-discriminatively

Median filter:
15*15*11 kernel

Gaussian filter:3mm stdcoarse Ground truth

Learned Voxel Rearrangement



Voxel Updating based on a High-resolution Template Skull

Image template

coarse

33 𝑏𝑙𝑜𝑐𝑘

13 𝑏𝑙𝑜𝑐𝑘

33 𝑏𝑙𝑜𝑐𝑘

13 𝑏𝑙𝑜𝑐𝑘

final output

𝐿0

𝐿1

𝐿2

▪ Given a coarse input, preselect a high-
resolution skull image as a template 

▪ Create an (three-level) image pyramid for the
      coarse and template image

▪ Starting from the second level (𝐿1), update 
each voxel (0,1 conversion) based on its 
closest voxel in the template image (NNS)

▪ Repeat until all voxels in 𝐿1 and 𝐿2 are updated 

Challenges: 
▪ too many voxels to update: 𝐿2 alone has over 60 M voxels
▪ linear search too slow for 60 M x 60 M searches
▪ memory-consuming  

Workflow: 



‘0b1010010...’

[128,414,59]
‘0b1010011...’

‘0b1010110...’…
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…
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Solutions: 

▪ Hash table-based NNS: time complexity O(1)
▪ Sparsity: only update voxels on skull surface
▪ Binariness: using bit-string to store voxels

time complexity O(1)

Voxel Updating based on a High-resolution Template Skull



Further acceleration: Data Parallelism by Multi-core CPU
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4 ∗ (128 ∗ 128 ∗ 16)

4 ∗ (512 ∗ 512 ∗ 64)

Voxel Updating based on a High-resolution Template Skull

▪ Divide the voxel grid to several smaller sections (number depends on the number of cores, e.g., 4)
▪ NNS is performs only the the corresponding sections
▪ Combining the resulting sections yields the final skull



Voxel Updating based on a High-resolution Template Skull

Hash table               vs               KD-tree

▪ KD-tree as another alternative data structure for fast NNS, besides hash table
▪ KD-tree requires reduction of feature dimension (from 27 to 20, using PCA) for fast search
▪ KD-tree yields better results but comsumes more memory than the hash table based search



Conclusion

▪ The difference between high-resolution and coarse (skull) voxel grids is their voxel arrangement.
▪ By exploiting the spatial sparsity and binariness of the skull images, the reconstruction time and memory 
      consumptation can be effectively reduced.

Dataset: https://autoimplant2021.grand-challenge.org/ 
Codes: https://github.com/Jianningli/voxel_rearrangement 

https://autoimplant2021.grand-challenge.org/
https://github.com/Jianningli/voxel_rearrangement
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