
Learning to Rearrange Voxels in Binary Segmentation
Masks for Smooth Manifold Triangulation

Jianning Li 1 , 2, Antonio Pepe 1, Christina Gsaxner 1,
Yuan Jin1 , Jan Egger 1 , 2

1 2

Problem to address: Neural Nets + Limited (GPU) Capacity +

Large Medical Image

Patch

 [Li, J. et al, 2021]

Cascaded CNN

[Kodym, O. et al, 2020]

Sparse CNN

[Artem, K., Li, J.

et al, 2021]
Resample

[Matzkin, F. et al, 2020]

 or Downsampling

[Mainprize, J.G, et al, 2020]

Voxel Rearrangement = High-resolution Output + Low Memory Consumption (~6GB)

𝑠𝑘𝑢𝑙𝑙 𝑖𝑚𝑎𝑔𝑒: 512 ∗ 512 ∗ 𝑍

Coarse

High Resolution

𝑣𝑜𝑥𝑒𝑙 𝑔𝑟𝑖𝑑 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

D
o

m
in

an
t

vo
xe

l a
rr

an
ge

m
e

n
t

p
at

te
rn

s

How - Voxel Rearrangement: Conversion between 0s and 1s for binary images

x1y1

1 0

𝑣𝑜𝑥𝑒𝑙 𝑔𝑟𝑖𝑑

𝑖𝑛𝑝𝑢𝑡

𝑡𝑎𝑟𝑔𝑒𝑡
x2y2

𝐹 0 = 0, 𝑥1𝑦1

𝐹 0 = 1, 𝑥2𝑦2

𝐹 1 = 0, 𝑥3𝑦3

𝐹 1 = 1, 𝑥4𝑦4
𝐹?

• can be learned: CNN
• updating voxels based on a high-resolution

template image
x3y3

x4y4

Voxel Rearrangement = High Resolution Output + Low Memory Consumption (~6GB)

• A coarse-to-fine (C2F) Framework: the memory consumption is equivalent to
processing low-resolution (128 ∗ 128 ∗ 64) images.

• High-resolution outcome can be obtained from the coarse output, using only
roughly 6GB GPU memory.

128 ∗ 128 ∗ 64 128 ∗ 128 ∗ 64 512 ∗ 512 ∗ 𝑍 512 ∗ 512 ∗ 𝑍

𝒗𝒐𝒙𝒆𝒍 𝒓𝒆𝒂𝒓𝒓𝒂𝒏𝒈𝒆𝒎𝒆𝒏𝒕𝒂𝒖𝒕𝒐𝐞𝐧𝐜𝐨𝐝𝐞𝐫 𝒊𝒏𝒕𝒆𝒓𝒑𝒐𝒍𝒂𝒕𝒊𝒐𝒏
Coarse High Resolution

Learned Voxel Rearrangement

𝑎𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟

Coarse High Resolution

𝐹

(𝒃)𝒂

Resulting Skull Voxel Grid:

Coarse skull Reconstructed skull through voxel
rearrangement of the coarse skull

Learned Voxel Rearrangement

3D printing - Voxel grid to Mesh: Marching Cube

Coarse Coarse High Resolution

V
o

xe
l G

rid
 R

e
p

re
se

n
tatio

n

Red line: extracted isosurface from the corresponding voxel grid

Learned Voxel Rearrangement

(𝒃)𝒂

Resulting Skull Triangular Mesh:

Coarse skull
Reconstructed skull through voxel
rearrangement of the coarse skull

Learned Voxel Rearrangement

3D Printing of Cranial Implant

Voxel grid

Mesh

coarse Reconstructed Groundtruth

Learned Voxel Rearrangement

Smoothing Filters

Smoothing Filters:

▪ Non-detail preserving

▪ Substantially erasing voxels non-discriminatively

Median filter:
15*15*11 kernel

Gaussian filter:3mm stdcoarse Ground truth

Learned Voxel Rearrangement

Voxel Updating based on a High-resolution Template Skull

Image template

coarse

33 𝑏𝑙𝑜𝑐𝑘

13 𝑏𝑙𝑜𝑐𝑘

33 𝑏𝑙𝑜𝑐𝑘

13 𝑏𝑙𝑜𝑐𝑘

final output

𝐿0

𝐿1

𝐿2

▪ Given a coarse input, preselect a high-
resolution skull image as a template

▪ Create an (three-level) image pyramid for the
 coarse and template image

▪ Starting from the second level (𝐿1), update
each voxel (0,1 conversion) based on its
closest voxel in the template image (NNS)

▪ Repeat until all voxels in 𝐿1 and 𝐿2 are updated

Challenges:
▪ too many voxels to update: 𝐿2 alone has over 60 M voxels
▪ linear search too slow for 60 M x 60 M searches
▪ memory-consuming

Workflow:

‘0b1010010...’

[128,414,59]
‘0b1010011...’

‘0b1010110...’…

‘0b0100010...’

Key-value pair (template image)

…
‘0b0011001...’

‘0b0011000...’

‘0b0011011...’…

‘0b1101001...’

[74,120,29],
[93,52,74],
[76,98,47]

‘0b0110110...’

‘0b1010010...’

‘0b0011001...’

[2,3,7],[100,236,126]

[8,10,59], [193,57,49], [76,98,69]

[118,342,99]

…

value-key pair (target image)

query

template image

synthesized
image

1

1

1

1

1
1

copy &
paste

Solutions:

▪ Hash table-based NNS: time complexity O(1)
▪ Sparsity: only update voxels on skull surface
▪ Binariness: using bit-string to store voxels

time complexity O(1)

Voxel Updating based on a High-resolution Template Skull

Further acceleration: Data Parallelism by Multi-core CPU

sy
n

th
es

is

4 ∗ (128 ∗ 128 ∗ 16)

4 ∗ (512 ∗ 512 ∗ 64)

Voxel Updating based on a High-resolution Template Skull

▪ Divide the voxel grid to several smaller sections (number depends on the number of cores, e.g., 4)
▪ NNS is performs only the the corresponding sections
▪ Combining the resulting sections yields the final skull

Voxel Updating based on a High-resolution Template Skull

Hash table vs KD-tree

▪ KD-tree as another alternative data structure for fast NNS, besides hash table
▪ KD-tree requires reduction of feature dimension (from 27 to 20, using PCA) for fast search
▪ KD-tree yields better results but comsumes more memory than the hash table based search

Conclusion

▪ The difference between high-resolution and coarse (skull) voxel grids is their voxel arrangement.
▪ By exploiting the spatial sparsity and binariness of the skull images, the reconstruction time and memory
 consumptation can be effectively reduced.

Dataset: https://autoimplant2021.grand-challenge.org/
Codes: https://github.com/Jianningli/voxel_rearrangement

https://autoimplant2021.grand-challenge.org/
https://github.com/Jianningli/voxel_rearrangement

Learning to Rearrange Voxels in Binary Segmentation
Masks for Smooth Manifold Triangulation

Jianning Li 1 , 2, Antonio Pepe 1, Christina Gsaxner 1,
Yuan Jin1 , Jan Egger 1 , 2

1 2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

