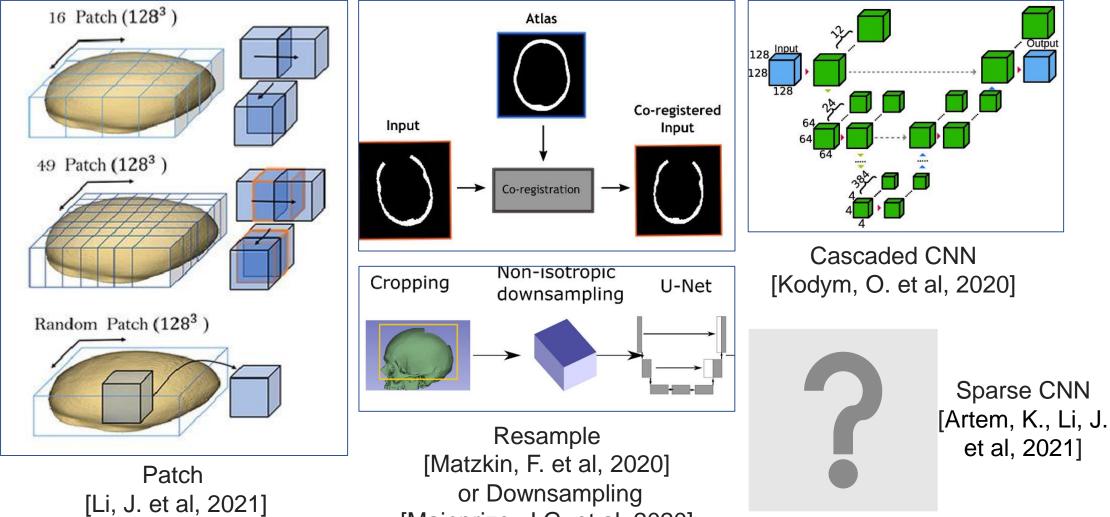


Learning to Rearrange Voxels in Binary Segmentation Masks for Smooth Manifold Triangulation

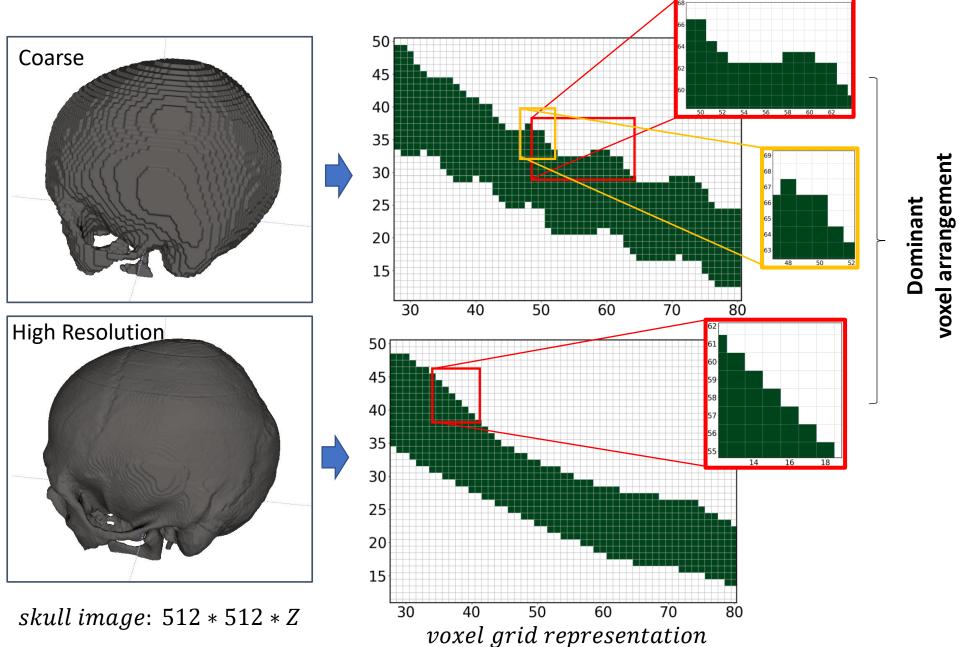
Jianning Li ¹, ², Antonio Pepe ¹, Christina Gsaxner ¹, Yuan Jin¹, Jan Egger ¹, ²

Problem to address: Neural Nets + Limited (GPU) Capacity + Large Medical Image



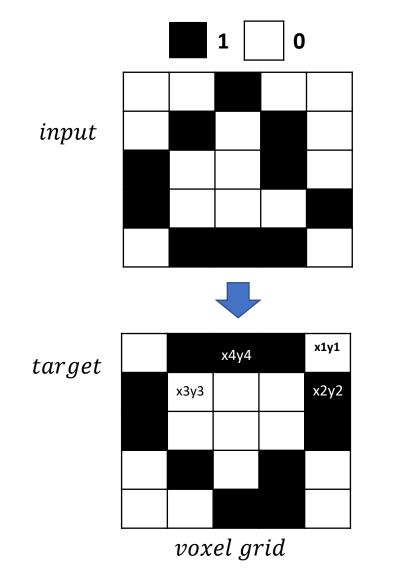
[Mainprize, J.G, et al, 2020]

Voxel Rearrangement = **High-resolution Output** + Low Memory Consumption (~6GB)



patterns

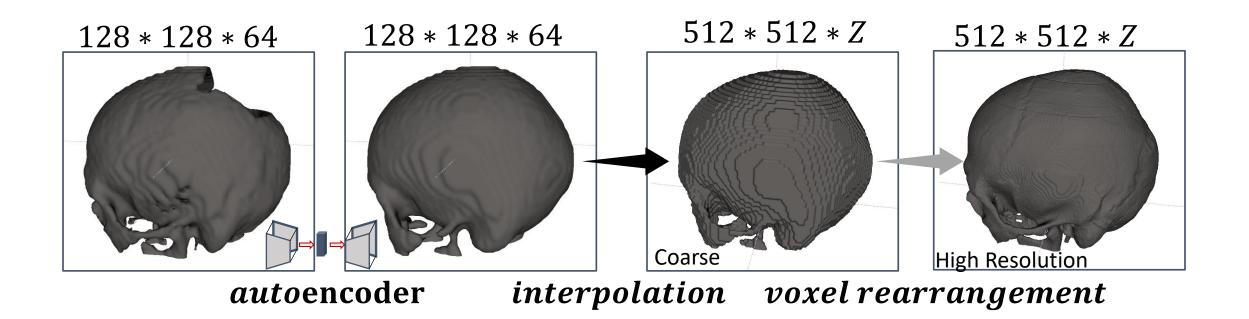
How - Voxel Rearrangement: Conversion between 0s and 1s for binary images



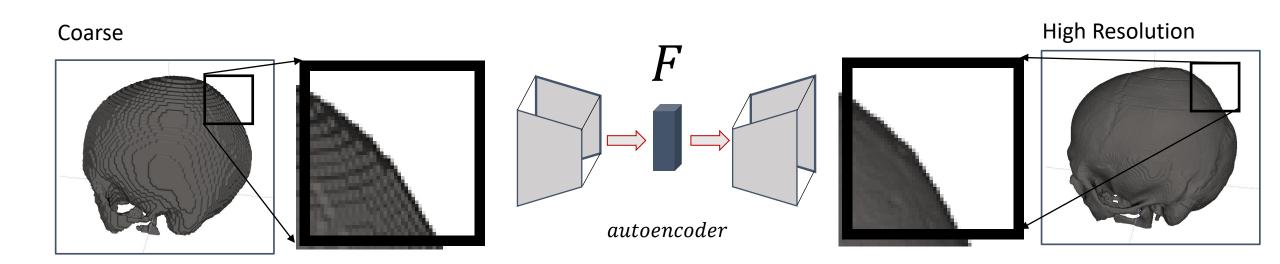
F(0) = 0, x1y1	
F(0) = 1, x2y2	F
F(1) = 0, x3y3	1
F(1) = 1, x4y4	

- can be learned: CNN
- updating voxels based on a high-resolution template image

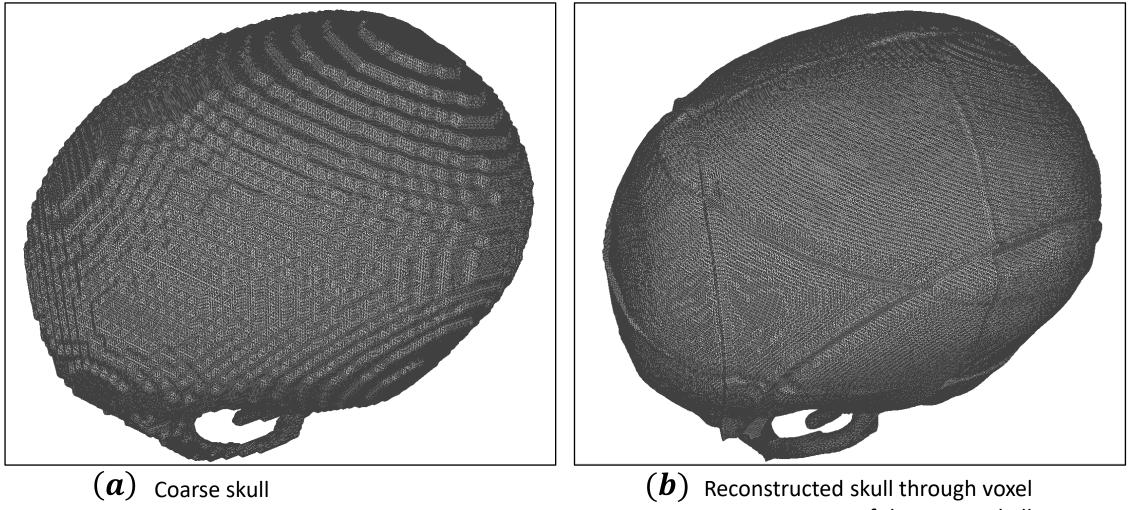
Voxel Rearrangement = High Resolution Output + Low Memory Consumption (~6GB)



- A coarse-to-fine (C2F) Framework: the memory consumption is equivalent to processing low-resolution (128 * 128 * 64) images.
- High-resolution outcome can be obtained from the coarse output, using only roughly 6GB GPU memory.



Resulting Skull Voxel Grid:



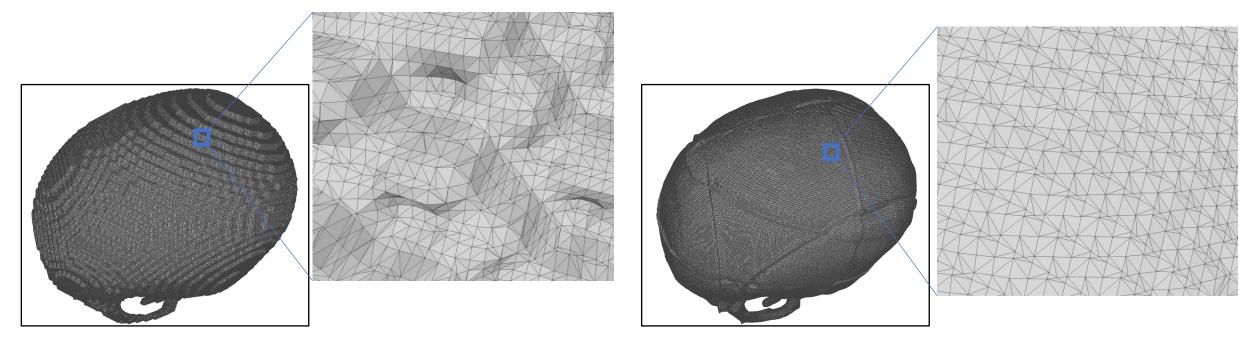
rearrangement of the coarse skull



3D printing - Voxel grid to Mesh: Marching Cube

Red line: extracted isosurface from the corresponding voxel grid

Resulting Skull Triangular Mesh:

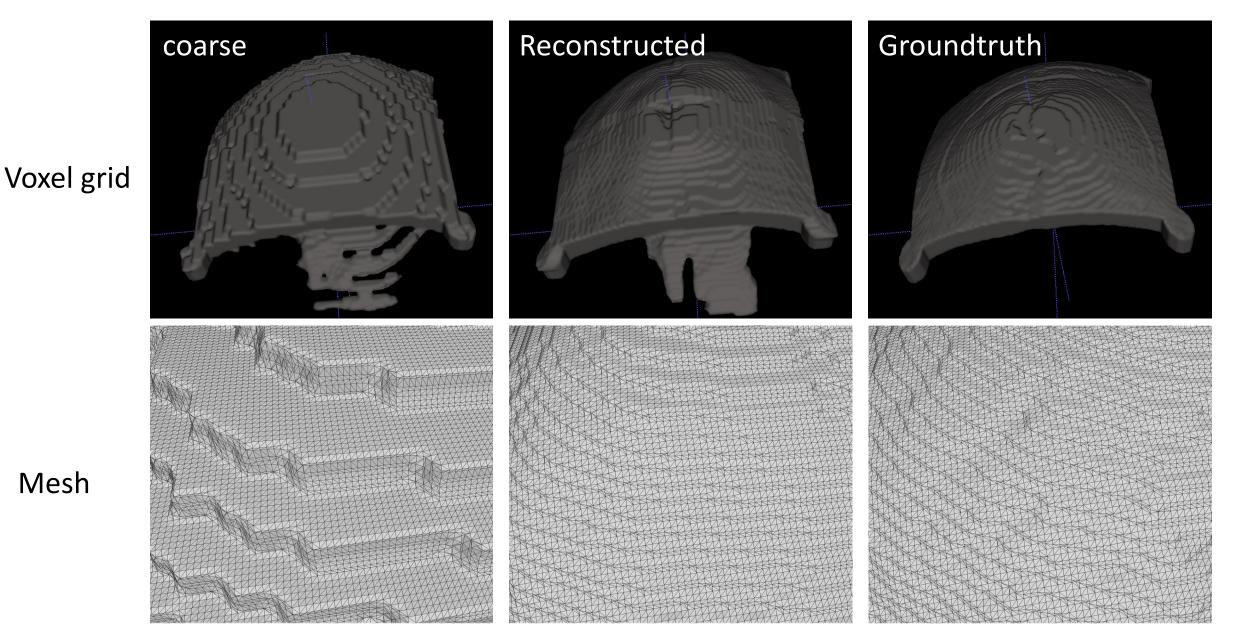


(b)

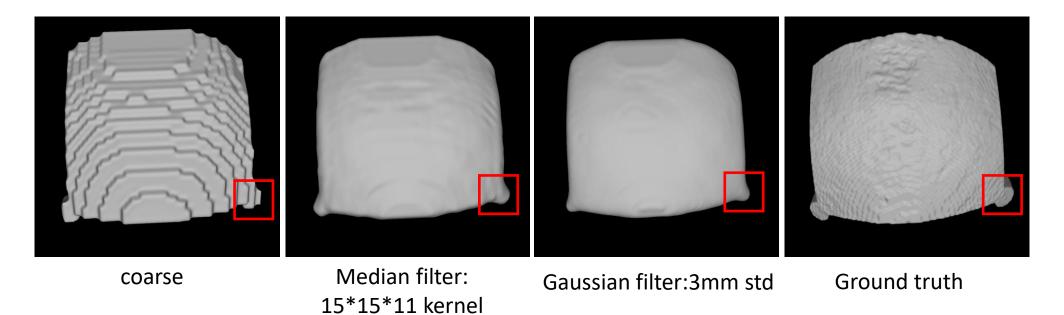
(a) Coarse skull

Reconstructed skull through voxel rearrangement of the coarse skull

3D Printing of Cranial Implant



Smoothing Filters



Smoothing Filters:

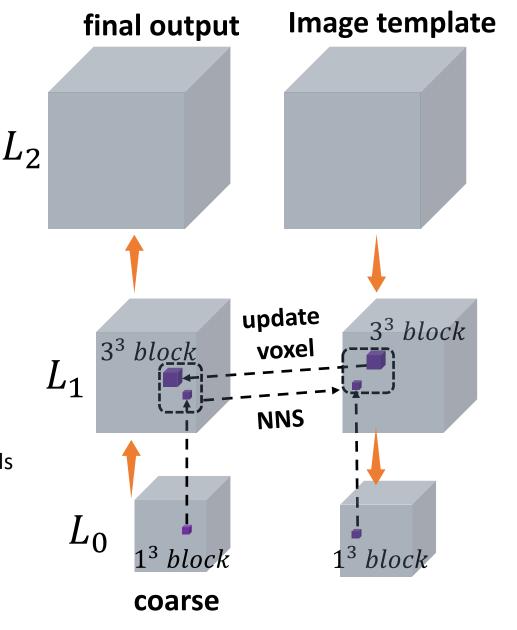
- Non-detail preserving
- Substantially erasing voxels non-discriminatively

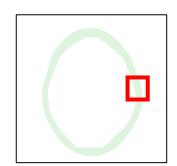
Workflow:

- Given a coarse input, preselect a highresolution skull image as a template
- Create an (three-level) image pyramid for the coarse and template image
- Starting from the second level (L₁), update each voxel (0,1 conversion) based on its closest voxel in the template image (NNS)
- Repeat until all voxels in L₁ and L₂ are updated

Challenges:

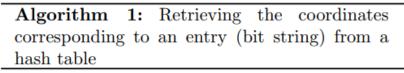
- too many voxels to update: L₂ alone has over 60 M voxels
- linear search too slow for 60 M x 60 M searches
- memory-consuming





Solutions:

- Hash table-based NNS: time complexity O(1)
- Sparsity: only update voxels on skull surface
- Binariness: using bit-string to store voxels

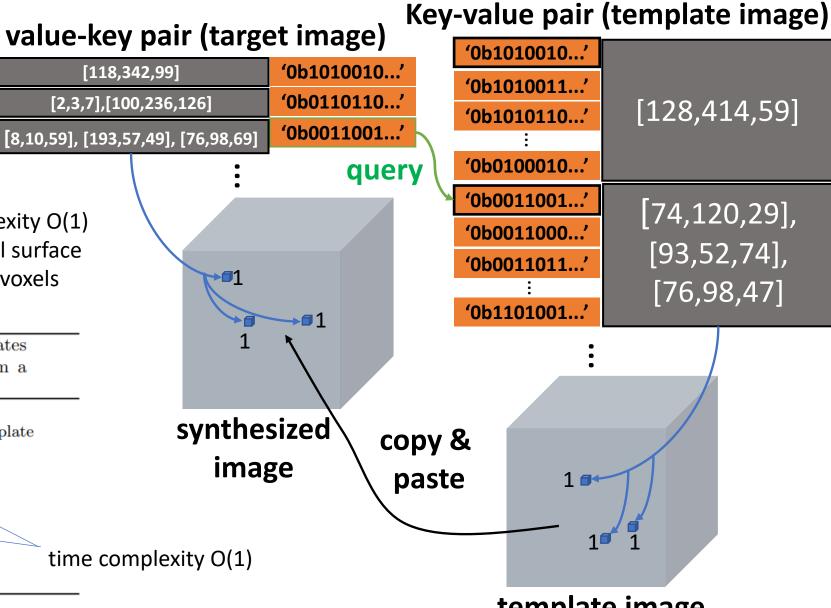


Input: a key K_c from the coarse pyramid ; Output: coordinate(s) (x, y, z) from the template pyramid ; if $\underline{K_c \text{ in } S_{ta}}$ then | coordinates= S_{ta} .get_value (K_c) ; else if $\underline{K_c \text{ in } S_{tn}}$ then

| coordinates= S_{tn} .get_value(K_c);

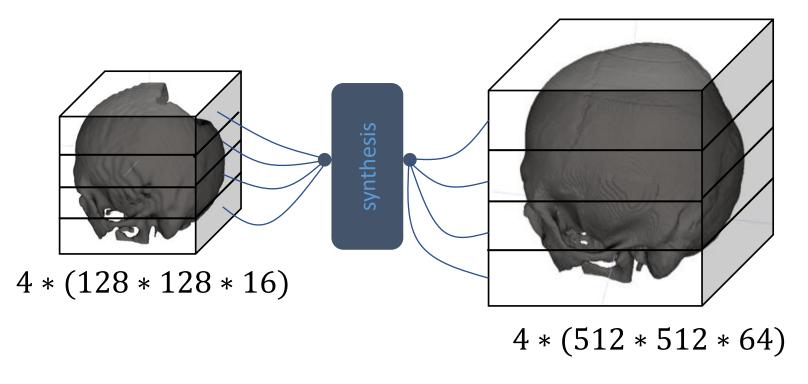
else

assign 0 or 1 to the voxels;

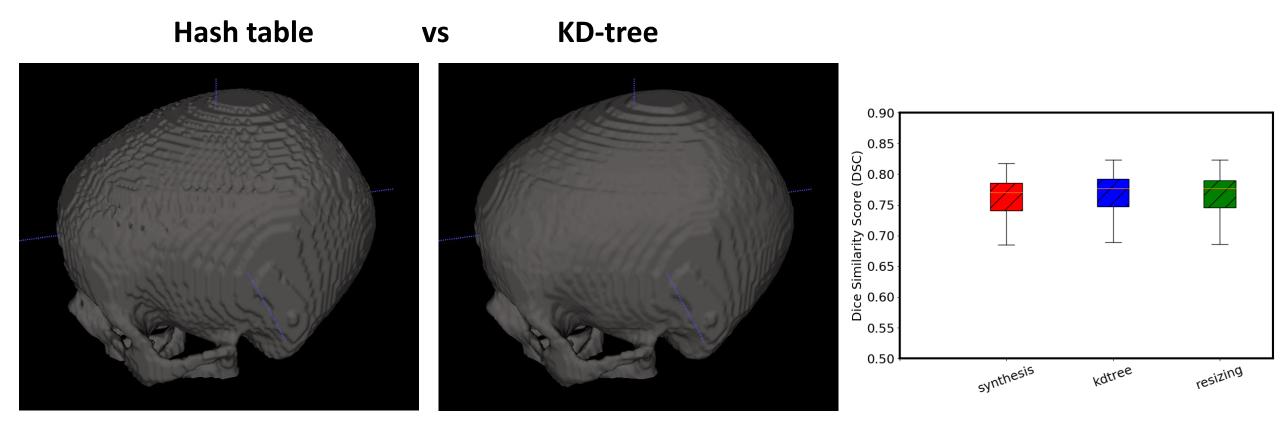


template image

Further acceleration: Data Parallelism by Multi-core CPU



- Divide the voxel grid to several smaller sections (number depends on the number of cores, e.g., 4)
- NNS is performs only the the corresponding sections
- Combining the resulting sections yields the final skull

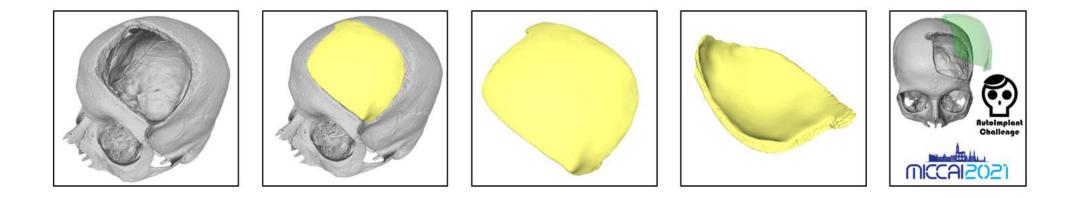


- KD-tree as another alternative data structure for fast NNS, besides hash table
- KD-tree requires reduction of feature dimension (from 27 to 20, using PCA) for fast search
- KD-tree yields better results but comsumes more memory than the hash table based search

Conclusion

- The difference between high-resolution and coarse (skull) voxel grids is their voxel arrangement.
- By exploiting the spatial sparsity and binariness of the skull images, the reconstruction time and memory consumptation can be effectively reduced.

Dataset: <u>https://autoimplant2021.grand-challenge.org/</u> Codes: <u>https://github.com/Jianningli/voxel_rearrangement</u>



Learning to Rearrange Voxels in Binary Segmentation Masks for Smooth Manifold Triangulation

Jianning Li ¹, ², Antonio Pepe ¹, Christina Gsaxner ¹, Yuan Jin¹, Jan Egger ¹, ²

